WNE Linear Algebra
 Resit Exam
 Series B

24 February 2023

Please use separate sheets for different problems. Please use single sheet for all questions. Please include all relevant calculations. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks. Each question is worth 4 marks.

Problems

Problem 1.

Let $V=\operatorname{lin}((1,2,9,12),(1,3,12,18),(-1,1,0,6))$ be a subspace of \mathbb{R}^{4}.
a) find a basis and the dimension of the subspace V,
b) find a system of linear equations which set of solutions is equal to V.

Problem 2

Let $V \subset \mathbb{R}^{4}$ be a subspace given by the homogeneous system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+10 x_{3}+6 x_{4}=0 \\
x_{1}+x_{2}+6 x_{3}+5 x_{4}=0
\end{array}\right.
$$

a) find a basis \mathcal{A} and the dimension of the subspace V,
b) let $v=(0,-7,-2 t, t) \in \mathbb{R}^{4}$. Find all $t \in \mathbb{R}$ such that $v \in V$ (i.e., vector v belongs to V) and compute coordinates of v relative to \mathcal{A}.

Problem 3.

Let $\mathcal{A}=((1,0),(1,-1))$ be a basis of \mathbb{R}^{2} and let $\mathcal{B}=((1,0,0),(0,1,1),(-1,0,1))$ be a basis of \mathbb{R}^{3}. Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation given by the matrix

$$
M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
3 & 1
\end{array}\right]
$$

Let $\psi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by the formula

$$
\psi\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{2}, x_{1}+x_{2}\right) .
$$

a) find the formula of φ.
b) find the matrix $M(\varphi \circ \psi){ }_{\mathcal{A}}^{\mathcal{B}}$.

Problem 4.
Let $V=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid 2 x_{1}-2 x_{2}+x_{3}=0\right\}$ be a subspace of \mathbb{R}^{3}.
a) find an orthonormal basis of V^{\perp},
b) compute the orthogonal reflection/symmetry of $w=(4,1,3)$ across V.

Problem 5.a) let $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a quadratic form given by the formula

$$
q\left(\left(x_{1}, x_{2}\right)\right)=-2 x_{1}^{2}+6 x_{1} x_{2}-5 x_{2}^{2} .
$$

Check if the form q is negative definite.
b) let $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a quadratic form given by the formula

$$
Q\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1}^{2}+5 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{3} .
$$

Check if the form Q is positive semidefinite.

Problem 6.

Consider the following linear programming problem $x_{2}-x_{5} \rightarrow$ min in the standard form with constraints

$$
\left\{\begin{array}{rlrl}
-x_{1} & +x_{2}+x_{3} & & 1 \\
2 x_{1} & -2 x_{2} \\
3 x_{1} & -3 x_{2} & & \\
& & x_{4} \\
+x_{5} & =6
\end{array} \text { and } x_{i} \geqslant 0 \text { for } i=1, \ldots, 5 .\right.
$$

a) which of the sets $\mathcal{B}_{1}=\{1,2,4\}, \mathcal{B}_{2}=\{2,3,5\}, \mathcal{B}_{3}=\{3,4,5\}$ is basic feasible? write the corresponding basic solution for all basic sets,
b) solve the linear programming problem using simplex method.

Questions

Question 1.

Let $A, B \in M(2 \times 2 ; \mathbb{R})$ be matrices such that $A^{2}=A, B^{2}=B$ and $A B=B A$. Does it follow that

$$
(A+B+A B)^{2}=A+B+7 A B ?
$$

Solution 1.

Yes, it does.

$$
\begin{aligned}
(A+B+A B)^{2} & =(A+B+A B)(A+B+A B)=A(A+B+A B)+B(A+B+A B)+A B(A+B+A B)= \\
& =A^{2}+A B+A^{2} B+B A+B^{2}+B A B+A B A+A B^{2}+A B A B= \\
& =A+A B+A B+A B+B+A B+A B+A B+A B=A+B+7 A B
\end{aligned}
$$

Question 2.

Let $A=\left[a_{i j}\right] \in M(3 \times 3 ; \mathbb{R})$ be a matrix. Let

$$
B=\left[\begin{array}{rrr}
a_{11} & -a_{12} & a_{13} \\
-a_{21} & a_{22} & -a_{23} \\
a_{31} & -a_{32} & a_{33}
\end{array}\right]
$$

Does it follow that $\operatorname{det} A=\operatorname{det} B$?

Solution 2.

Yes, it does. By the Sarrus rule $\operatorname{det} B=\operatorname{det} A$, that is all minus signs cancel.

Question 3.

Give an example of a matrix $A \in M(2 \times 2 ; \mathbb{R})$ with eigenvalues $\lambda=0$ and $\lambda=2$ such that

$$
V_{(0)}=\operatorname{lin}((1,-1)), \quad V_{(2)}=\operatorname{lin}((1,0))
$$

Is matrix A uniquely determined?

Solution 3.

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The conditions are equivalent to

$$
A\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=0\left[\begin{array}{r}
1 \\
-1
\end{array}\right], \quad A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

that is

$$
\left[\begin{array}{l}
a-b \\
c-d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
a \\
c
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] .
$$

This gives $a=2, c=0$, and consequently $b=a=2$ and $d=c=0$. Using non-zero vectors proportional to $(1,-1)$ and $(1,0)$, that is $(p,-p)$ and $(q, 0)$ for $p, q \neq 0$ yields the same numbers, therefore matrix $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 0\end{array}\right]$ is uniquely determined.

Question 4.

Let $A \in M(2 \times 2 ; \mathbb{R})$ be an antisymmetric matrix, i.e. $A^{\top}=-A$. Does it follow that for any $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathbb{R}^{2}$

$$
(A v) \cdot v=0
$$

where $v \cdot w$ denotes the standard scalar product of vectors $v, w \in \mathbb{R}^{2}$?

Solution 4.

Yes, it does. If $A=-A^{\top}=\left[\begin{array}{cc}0 & a \\ -a & 0\end{array}\right]$, then

$$
(A v) \cdot v=\left[\begin{array}{ll}
a v_{2} & -a v_{1}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=a v_{1} v_{2}-a v_{1} v_{2}=0
$$

In general, for any matrix $A=-A^{\top} \in M(n \times n ; \mathbb{R})$ and $v \in \mathbb{R}^{n}$

$$
(A v) \cdot v=(A v)^{\boldsymbol{\top}} v=v^{\boldsymbol{\top}} A^{\boldsymbol{\top}} v=-v^{\boldsymbol{\top}}(A v)=-v \cdot(A v)
$$

that is

$$
2(A v) \cdot v=0 \Longrightarrow(A v) \cdot v=0
$$

Question 5.

Give an example of a formula of an indefinite quadratic form $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $q((1,0))=-10, q((0,1))=-11$ or prove that it does not exist.

Solution 5.

Let $q\left(\left(x_{1}, x_{2}\right)\right)=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}$. Since $q((1,0))=a$ and $q((0,1))=b$, we have

$$
q\left(\left(x_{1}, x_{2}\right)\right)=-10 x_{1}^{2}+b x_{1} x_{2}-11 x_{2}^{2}
$$

Indefinite quadratic form attains positive and negative values. We have, for example

$$
q((1,1))=-21+b
$$

hence it is enough to take, for example, $b=22$. Finally

$$
q\left(\left(x_{1}, x_{2}\right)\right)=-10 x_{1}^{2}+22 x_{1} x_{2}-11 x_{2}^{2}
$$

